If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-2356=0
a = 1; b = 12; c = -2356;
Δ = b2-4ac
Δ = 122-4·1·(-2356)
Δ = 9568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9568}=\sqrt{16*598}=\sqrt{16}*\sqrt{598}=4\sqrt{598}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{598}}{2*1}=\frac{-12-4\sqrt{598}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{598}}{2*1}=\frac{-12+4\sqrt{598}}{2} $
| x^2+12x-2356=0 | | (6x+7)/2-4=7 | | 4x+3=-2x-3,x= | | (6x+7)/2-4=7 | | (6x+7)/2-4=7 | | (6x+7)/2-4=7 | | (6x+7)/2-4=7 | | 5/2x+3=3x+1/2 | | 1=3x-x | | 17(2x-2)=10×15 | | S(t)=-15t+6 | | (4x-10)/3=-10 | | 1=3x-x=x-4=2x | | (5x-4)/4=4 | | 1/2(7((14/5)x-6)=6(14/5)-10 | | (x+3)/3+4=7 | | 21=4b | | 5-3x=-3x+1+4 | | 5-3x=-3x+1+4 | | 5-3x=-3x+1+4 | | 0.6(y+2)−0.2(2−y)=1 | | 0.6(y+2)−0.2(2−y)=1 | | 98=7(m+4) | | 42=6-4m | | 14a+10=10 | | 2q−–6.9=18.9 | | 5x-50+2x+10=180 | | –5.7=–3.7+–2n | | 7v+6=36-8v | | 7v+6=36-8v | | 4x+3=7x+10 | | 4x+3=7x+10 |